Padaartikel Panjang Garis Tinggi pada Segitiga dan Pembuktiannya ini kita akan lebih menekankan lagi contoh-contoh soalnya dan tentu pembuktian rumus-rumus yang digunakan. Perhatikan gambar segitiga ABC berikut ini, Diketahui panjang BC = 12 cm, AD = 30 cm , AC = 15 cm. Tentukan panjang garis tinggi BE. Penyelesaian : *).
Contoh Soal 3. Diketahui segitiga ABC dengan garis tinggi AD seperti gambar berikut. Jika ∠BAC = 90°, AB = 4 cm, AC = 3 cm, dan BC = 5 cm, tentukan a. luas segitiga ABC; b. panjang AD. Jawab a. Karena ∠BAC = 90° salah satu kaki sudutnya bisa dijadikan tinggi atau alas, maka = ½ x alas x tinggi = ½ x AB x AC = ½ x 4 cm x 3 cm = 6 cm2 b. panjang AD dapat dicari dengan konsep luas segitiga yaitu = ½ x alas x tinggi = ½ x BC x AD 6 cm2 = ½ x 5 cm x AD AD = 6 cm2/2,5 cm AD = 2,4 cm Soal 5. Perhatikan gambar berikut. Hitunglah a. luas segitiga ABD; b. luas segitiga BCD; c. luas bangun ABCD. Jawab a. Luas segitiga ABD dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x AB x DE = ½ x 14 cm x 9 cm = 63 cm2 b. Luas segitiga BCD dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x CD x DE = ½ x 24 cm x 9 cm = 108 cm2 c. Luas bangun ABCD dapat dicari dengan persamaan = + = 63 cm2 + 108 cm2 = 171 cm2 Contoh Soal dan Pembahasan Segitiga Lengkap Contoh soal 1 Perhatikan gambar berikut! Tentukan nilai x dan besar sudut A pada segitiga diatas ! Pembahasan 180º = ∠A+∠B+∠C 180º = 3x + 10° + x + 15° + 35° 180º = 4x + 60° 4x=180°-60° 4x = 120° x = 120°/4 x = 30° Besar ∠A = 3x + 10° ∠A = 330° + 10° ∠A = 90° + 10° = 100° Contoh soal 2 Perhatikan gambar berikut! Tentukan luas dari a. ΔACD b. ΔBCD c. ΔABD Pembahasan a. ΔACD Perhatikan gambar dibawah, daerah yang berwarna kuning adalah segitiga ACD Berdasarkan gambar diketahui Panjang alasnya = AC = 4 cm Tingginya = AD = 10 cm L ΔACD = ½ × AC × AD L ΔACD = ½ × 4 × 10 L ΔACD = 20 cm² b. ΔBCD Daerah yang berwarna biru pada gambar diatas adalah segitiga BCD Berdasarkan gambar diketahui Panjang alasnya = BC = 4 cm Tingginya = AD = 10 cm tingginya tetap AD, karena tinggi segitiga adalah garis yang tegak lurus dengan alasnya L ΔBCD = ½ × BC × AD L ΔBCD = ½ × 8 × 10 L ΔBCD = 40 cm² c. ΔABD Daerah yang berwarna hijau pada gambar dibawah adalah segitiga ABD Berdasarkan gambar diketahui Panjang alasnya = AB = 8 + 4 = 12 cm Tingginya = AD = 10 cm L ΔBCD = ½ × AB × AD L ΔBCD = ½ × 12 × 10 L ΔBCD = 60 cm² Contoh soal 3 Tentukan panjang CD dan luas segitiga ABC pada gambar berikut! Pembahasan a. Panjang CD menggunakan rumus Phytagoras b. Luas ΔABC Panjang alasnya = AB = 12 cm Tinggi = CD = 10 cm L ΔBCD = ½ × AB × CD L ΔBCD = ½ × 12 × 12 L ΔBCD = 72 cm² Contoh soal 4 Hitunglah panjang EG pada gambar berikut! Pembahasan Agar dapat mengitung panjang EG terlebih dahulu kita harus mengetahui panjang EF. Panjang EF pada ΔDEF dapat dicari dengan teorema Phytagoras Panjang EG pada ΔEFG Contoh soal 5 Sebuah segitiga sama kaki mempunyai keliling 98 cm, jika panjang alasnya 24 cm, hitung luas segitiga tersebut! Pembahasan Diketahui Panjang alas = 24 cm keliling = 98 cm keliling = sisi1 + sisi2 + alas 98 cm = sisi1 + sisi2 + 24 cm Sisi1 + sisi2 = 98 – 24 = 74 cm ingat, dalam segitiga sama kaki sisi1 = sisi2 Maka sisi 1 = sisi 2 = 74/2 = 37 cm. Untuk mencari luas segitiga, kita harus mengetahui tinggi dari segitiga tersebut. Tinggi segitiga dapat dicari menggunakan rumus Phytagoras dengan sisi 1 atau sisi 2 sebagai sisi miring 37 cm, dan alasnya yaitu ½ alas segitiga tersebut 24/2 = 12 cm tinggi segitiga tersebut adalah 35cm Sehingga luasnya adalah L = L = ½×24×35 L = 420 cm² Contoh soal 6 Tentukan jari-jari lingkaran dalam segitiga dari gambar berikut! Diketahui AC tegak lurus dengan AB. Pembahasan s = ½ keliling Δ = ½7+24+25 = 28 Luas segitiga L = ½ × AB × AC L = ½ × 7 × 24 = 84 cm² Jari-jari lingkaran dalam segitiga r = L/s =8 4/28 = 3 cm Contoh soal 7 Perhatikan gambar berikut! Tentukan jari-jari lingkaran luar segitiga dari gambar diatas! Pembahasan s = ½ keliling Δ = ½12+16+20 = 24 Luas segitiga segitiga tersebut adalah segitiga sembarang, karena tingginya tidak diketahui maka kita hitung luasnya dengan teorema Heron Jari-jari lingkaran luar segitiga Contoh soal 8 Berdasarkan gambar pada contoh soal 7, hitunglah selisih keliling segitiga dan keliling lingkaran tersebut! Pembahasan Keliling Δ = s1 + s2 + s3 = 12 + 16 + 20 = 48 cm Keliling ⨀ = 2 π r = 2 × 3,14 × 9,62 = 60,41 cm Selisih = Keliling ⨀ – Keliling Δ = 60,41 – 48 = 12,41 cm
DiketahuiABC, dengan AB = 20 cm, BC = 15 cm dan AC = 13 cm seperti gambar di samping. Hitunglah garis tinggi CD dan tentukan luasnya. Penyelesaian: Ada dua persamaan Persamaan I CD 2 = AC2 – AD Prsamaan II CD 2 = BC – BD2 A B D C 10 cm 10 cm 8 cm 6 cm B 13 cm 15 cm D x cm (20 – x) cm
Blog Koma - Sebelumnya telah dibahas mengenai "panjang garis-garis istimewa pada segitiga" yang tanpa disertai dengan contoh soal ataupun pembuktiaanya. Pada artikel Panjang Garis Tinggi pada Segitiga dan Pembuktiannya ini kita akan lebih menekankan lagi contoh-contoh soalnya dan tentu pembuktian rumus-rumus yang digunakan. Menentukan Panjang Garis Tinggi pada Segitiga Garis tinggi sebuah segitiga adalah garis yang melalui sebuah titik sudut segitiga dan tegak lurus pada sisi yang berhadapan dengan titik sudut tersebut. perhatikan gambar garis tinggi berikut, Dalil-dalil yang berlaku pada garis tinggi segitiga yaitu 1. Ketiga garis tinggi berpotongan pada satu titik titik O yang disebut dengan titik tinggi. 2. Pada segitiga siku-siku, garis tinggi ke hipotenusanya sisi terpanjang membagi segitiga siku-siku menjadi dua segitiga yang sebangun dan juga sebangun dengan segitiga awalnya ketiga segitiga yang ada sebangun seperti gambar berikut ini, $\Delta$ABC sebangun dengan $\Delta$ABD sebangun dengan $\Delta$CBD. 3. Menentukan panjang garis tinggi pada segitiga Untuk menentukan panjang garis tinggi, kita gunakan Dalil Proyeksi. Ada dua jenis yaitu *. Dali proyeksi segitiga lancip, Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut. Misalkan panjang $ CD = p \, $ , panjang $ p $ bisa ditentukan dengan rumus $ \, c^2 = a^2 + b^2 - 2ap $ Misalkan panjang $ BD = k \, $ , panjang $ k $ bisa ditentukan dengan rumus $ \, b^2 = a^2 + c^2 - 2ak $ *. Dali proyeksi segitiga tumpul, Kita proyeksikan garis CA pada garis BC, hasil proyeksinya adalah garis CD seperti gambar berikut. Misalkan panjang $ BD = p \, $ , panjang $ p $ bisa ditentukan dengan rumus $ \, c^2 = a^2 + b^2 + 2ap $ Catatan i. Setelah ketemu pajang $ p \, $ , bari kita akan menentukan tinggi segitiganya dengan pythagoras. Artinya kita tidak bisa langsung dapat menentukan tinggi segitiganya, tapi bertahap. ii. Ada cara lain sehingga tinggi segitiga bisa langsung kita temukan tanpa menjari $ p \, $ terlebih dahulu yaitu menggunakan konsep luas segitiga. Menentukan Panjang Garis Tinggi dengan Luas Segitiga *. Luas segitiga Menggunakan rumus Heron. Misalkan diketahui sisi-sisi segitiga yaitu $a, \, b, \, $ dan $ \, c $. $ s = \frac{1}{2}a+b+c $ $ \text{Luas } \Delta = \sqrt{ss-as-bs-c} $. Untuk pembuktian rumus Heron ini, silahkan baca pada "Penerapan Trigonometri pada Segitiga Aturan Sinus, Aturan Cosinus, Luas Segitiga". *. Menentukan panjang garis tinggi, Perhatikan gambar berikut, Garis tingginya adalah garis AF, BD, dan CE. $ \begin{align} AF = t_a & = \frac{2}{a} \sqrt{ss-as-bs-c} \\ BD = t_b & = \frac{2}{b} \sqrt{ss-as-bs-c} \\ CE = t_c & = \frac{2}{c} \sqrt{ss-as-bs-c} \end{align} $ Contoh soal garis tinggi pada segitiga 1. Sebuah segitiga ABC dengan AB = 5 cm, BC = 6 cm, dan AC = 7 cm. AD adalah garis tinggi segitga ABC, tentukan panjang AD dan luas segitiga ABC. Penyelesaian Cara I Menggunakan dalil Proyeksi, *. Menentukan nilai $ p $, $ \begin{align} c^2 & = a^2 + b^2 - 2ap \\ 5^2 & = 6^2 + 7^2 - \\ 25 & = 36 + 49 - 12p \\ 25 & = 36 + 49 - 12p \\ 12p & = 60 \\ p & = 5 \end{align} $ *. Menentukan panjang AD dengan pythagoras segitiga ADC $ \begin{align} AC^2 & = AD^2 + DC^2 \\ 7^2 & = AD^2 + 5^2 \\ 49 & = AD^2 + 25 \\ AD^2 & = 24 \\ AD & = \sqrt{24} = 2\sqrt{6} \end{align} $ Sehingga panjang garis tinggi $ AD = 2 \sqrt{6} \, $ cm. *. Menentukan Luas segitiga ABC. Luas ABC $ = \frac{1}{2}. a . t = \frac{1}{2}.6 . 2 \sqrt{6} = 6 \sqrt{6} $. Jadi, luas segitiga ABC adalah $ \, 6 \sqrt{6} \, $ cm$^2$. Cara II Menggunakan luas segitiga, *. Diketahui $ a = 6, b = 7 , c = 5 $. $ s = \frac{1}{2}a+b+c = \frac{1}{2}6 + 7 + 5 = \frac{1}{2}.18 = 9 $. *. Menentukan panjang AD dengan luas segitiga $ \begin{align} AD = t_a & = \frac{2}{a} \sqrt{ss-as-bs-c} \\ & = \frac{2}{6} \sqrt{99-69-79-5} \\ & = \frac{1}{3} \sqrt{ \\ & = \frac{1}{3} \\ & = 2\sqrt{6} \end{align} $ Sehingga panjang garis tinggi $ AD = 2 \sqrt{6} \, $ cm. *. Luas segitiga menggunakan rumus Heron $ \begin{align} \text{Luas ABC } & = \sqrt{ss-as-bs-c} \\ & = \sqrt{99-69-79-5} \\ & = \sqrt{ \\ & = \\ & = 6 \sqrt{6} \end{align} $ Jadi, luas segitiga ABC adalah $ \, 6 \sqrt{6} \, $ cm$^2$. Bagaimana dengan kedua cara di atas, lebih mudah mana, cara I atau cara II. Cara II rumus Heron akan mudah kalau panjang semua sisi segitiganya berupa bilangan bulat, dan akan sulit jika salah satu panjang sisi segitiganya dalam bentuk akar. Ini artinya mudah atau tidaknya bersifat relatif. 2. Diketahui persegi panjang ABCD dengan AB = 8 cm dan BC = 6 cm. Titik M dan N terletak pada AC sedemikian sehingga DM dan BN tegak lurus pada AC. Tentukan panjang MN? Penyelesaian *. Gambar persegi panjangnya. Segitiga ADC siku-siku di D sehingga dengan pythagoras kita peroleh AC = 10 cm. Garis DM adalah garis tinggi pada segitiga ADC sehingga bisa kita terapkan dalil proyeksi. *. Menentukan panjang AM pada gambar b $ \begin{align} CD^2 & = AD^2 + AC^2 - . AM \\ 8^2 & = 6^2 + 10^2 - 2. 10 . AM \\ 64 & = 36 + 100 - 20. AM \\ AM & = 3,6 \end{align} $ Karena panjang AM = CN, sehingga CN = 3,6 juga. *. Menentukan panjang MN $ \begin{align} MN & = AC - AM + CN \\ & = 10 - 3,6 + 3,6 \\ & = 10 - 7,2 \\ & = 2,8 \end{align} $ Jadi, panjang AM = 2,8 cm. 3. Perhatikan gambar segitiga ABC berikut ini, Diketahui panjang BC = 12 cm, AD = 30 cm , AC = 15 cm. Tentukan panjang garis tinggi BE. Penyelesaian *. Kita gunakan luas segitiga Luas $ = \frac{1}{2}. $ \begin{align} \text{Luas segitiga ABC dengan alas AC} & = \text{Luas segitiga ABC dengan alas BC} \\ \frac{1}{2}. AC . BE & = \frac{1}{2}.BC . AD \\ AC . BE & = BC . AD \\ 15 . BE & = 12 \times 30 \\ BE & = \frac{12 \times 30}{15} \\ BE & = 24 \end{align} $ Jadi, panjang garis tinggi BE = 24 cm. 4. Sebuah segitiga ABC dengan AB = 5 cm, BC = 7 cm, dan AC = 6 cm. Garis tinggi AD dan BE berpotongan di titik O. Tentukan perbandingan panjang AOOD dan perbandingan BO OE. Penyelesaian *. Untuk menjawab soal ini, kita menggunakan garis tinggi dalil proyeksi dan dalil Menelaus. *. Dalil proyeksi untuk garis tinggi AD dan BE. garis tinggi AD $ \begin{align} AC^2 & = AB^2 + BC^2 - 2 . BC . BD \\ 6^2 & = 5^2 + 7^2 - 2 . 7 . BD \\ 36 & = 25 + 49 - 14. BD \\ 36 & = 25 + 49 - 14. BD \\ 14BD & = 38 \\ BD & = \frac{38}{14} = \frac{19}{7} \end{align} $ Sehingga panjang $ DC = 7 - BD = 7 - \frac{19}{7} = \frac{30}{7} $. garis tinggi BE $ \begin{align} BC^2 & = AB^2 + AC^2 - 2 . AC . AE \\ 7^2 & = 5^2 + 6^2 - 2 . 6 . AE \\ 49 & = 25 + 36 - 12. AE \\ AE & = 1 \end{align} $ Sehingga panjang $ CE = 6 - AE = 6 - 1 = 5 $. *. Dalil Menelaus untuk perbandingan garis, Perbandingan AO OD, $ \begin{align} \frac{DO}{AO}. \frac{AE}{EC}. \frac{CB}{DB} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{7}{\frac{19}{7}} & = 1 \\ \frac{DO}{AO}. \frac{1}{5}. \frac{49}{19} & = 1 \\ \frac{DO}{AO}. \frac{49}{95} & = 1 \\ \frac{DO}{AO} & = \frac{95}{49} \end{align} $ Sehingga perbandingan AO DO = 49 95. Perbandingan BO OE, $ \begin{align} \frac{EO}{OB}. \frac{BD}{DC}. \frac{CA}{AE} & = 1 \\ \frac{EO}{OB}. \frac{\frac{19}{7}}{\frac{30}{7}}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{30}. \frac{6}{1} & = 1 \\ \frac{EO}{OB}. \frac{19}{5} & = 1 \\ \frac{EO}{OB} & = \frac{5}{19} \end{align} $ Sehingga perbandingan BO OE = 19 5. Pembuktian dalil Proyeksi Untuk membuktikan dalil proyeksi, kita cukup menggunakan teorema pythagoras. Perhatikan gambar berikut, *. Dalil proyeksi segitiga lancip. Misalkan panjang $ CD = p , \, $ maka panjang $ BD = a - p $. *. Pada $\Delta$BAD dan $\Delta$CAD masing-masing siku-siku di D sehingga bisa diterapkan pythagoras Segitiga CAD $ AD^2 = b^2 - p^2 \, $ ....persi. Segitiga BAD $ AD^2 = c^2 - a-p^2 \, $ ....persii. Dari persi dan persii, panjang AD sama, sehingga $ \begin{align} c^2 - a-p^2 & = b^2 - p^2 \\ c^2 - a^2 - 2ap + p^2 & = b^2 - p^2 \\ c^2 - a^2 + 2ap - p^2 & = b^2 - p^2 \\ c^2 & = a^2 + b^2 - 2ap \end{align} $ Jadi terbukti persamaan $ c^2 = a^2 + b^2 - 2ap $. *. Dalil proyeksi segitiga tumpul. Misalkan panjang $ BD = p , \, $ maka panjang $ CD = a + p $. *. Pada $\Delta$ADB dan $\Delta$ADC masing-masing siku-siku di D sehingga bisa diterapkan pythagoras Segitiga ADB $ AD^2 = c^2 - p^2 \, $ ....persi. Segitiga ADC $ AD^2 = b^2 - a+p^2 \, $ ....persii. Dari persi dan persii, panjang AD sama, sehingga $ \begin{align} b^2 - a+p^2 & = c^2 - p^2 \\ b^2 - a^2 + 2ap + p^2 & = c^2 - p^2 \\ b^2 - a^2 - 2ap - p^2 & = c^2 - p^2 \\ b^2 & = a^2 + c^2 + 2ap \end{align} $ Jadi terbukti persamaan $ b^2 = a^2 + c^2 + 2ap $. Pembuktian panjang garis tinggi dengan luas segitiga Berdasarkan rumus luas segitiga dengan rumus Heron, $ \text{Luas ABC} = \sqrt{ss-as-bs-c} $ . Perhatikan gambar segitiga berikut. *. Perhatikan segitiga ABC dengan alas $ BC = a \, $ dan tinggi $ AF = t_a $ $ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{ss-as-bs-c} & = \frac{1}{2}. a . t_a \\ t_a & = \frac{2}{a} \sqrt{ss-as-bs-c} \end{align} $ *. Perhatikan segitiga ABC dengan alas $ AC = b \, $ dan tinggi $ BD = t_b $ $ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{ss-as-bs-c} & = \frac{1}{2}. b . t_b \\ t_b & = \frac{2}{b} \sqrt{ss-as-bs-c} \end{align} $ *. Perhatikan segitiga ABC dengan alas $ AB = c \, $ dan tinggi $ CE = t_c $ $ \begin{align} \text{Luas ABC} & = \frac{1}{2}. \text{alas}. \text{tinggi} \\ \sqrt{ss-as-bs-c} & = \frac{1}{2}. c . t_c \\ t_c & = \frac{2}{c} \sqrt{ss-as-bs-c} \end{align} $ Jadi, sudah terbukti panjang garis tinggi yang diminta.

Diketahuikubus abcd efgh seperti pada gambar berikut besar sudut antara ab dan bg adalah a. buatlah segitiga siku siku BCG dengan siku siku di C dan α terletak di sudut CBG. α adalah sudut antara garis BG dan bidang Sudut antara BE dan BG adalah sudut EBG, karena EB = BG = EG = 5√2 => diagonal sisi. Maka ∆BEG adalah segitiga sama

Jawaban yang benar untuk pertanyaan tersebut adalah C. Untuk menjawab soal di atas, kita gunakan teorema pythagoras seperti di bawah ini Pertama kita perlu mencari panjang , karena dengan menggunakan perbandingan diperoleh Untuk mencari kita perhatikan segitiga , maka dengan kesamaan nilai , maka akan berlaku sebagai berikut. Karena kita berhubungan dengan panjang segitiga, maka nilai x yang memenuhi adalah . Sehingga akan berlaku Dengan menggunakan teorema Pythagoras, maka panjang Oleh karena itu, jawaban yang benar adalah C.

XY,Z dan W adalah proyeksi P ke garis AB,BC,CD dan AD. Buktikan bahwa salah satu titik dari X,Y,Z dan W merupakan titik tinggi dari segitiga yang dibentuk oleh ketiga titik lainnya. Lingkaran O mempunyai diameter 10 cm dan segitiga ABC adalah segitiga sama sisi. Berapa pendekatan luas daerah yang terdekat? Jawab : 2 (Luas juring – Luas

Soal Menghitung Luas Segitiga - Di artikel sebelumnya saya sudah memberikan materi tentang Menghitung dan rumus Luas Segitiga dan untuk menambah pemahaman akan materi tersebut saya akan memberikan Contoh soal dan juga pembahasannya mengenai Luas segitiga , baca dan cermati contoh soal dibawah iniContoh Soal 1. Hitunglah keliling segitiga dengan panjang sisi-sisinya sebagai berikut. a. 4,5 cm; 7,5 cm; dan 5,5 cm b. 8 cm; 16 cm; dan 12 cm c. 25 cm; 35 cm; dan 20 cm Penyelesaian Mencari keliling segitiga dapat dilakukan dengan menjumlahkan seluruh sisi dari segitiga tersebut, maka a. 4,5 cm + 7,5 cm + 5,5 cm = 17,5 cm b. 8 cm+ 16 cm + 12 cm = 36 cm c. 25 cm + 35 cm + 20 cm = 80 cm Contoh Soal 2. Hitunglah luas daerah masing-masing segitiga pada gambar di bawah ini. Penyelesaiani Luas segitiga ABC dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x AB x BC = ½ x 8 cm x 6 cm = 24 cm2 ii Luas segitiga DEF dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x 12 cm x 6 cm = 36 cm2 iii Luas segitiga PQR dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x 16 cm x 4 cm = 32 cm2 iv Luas segitiga STU dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x ST x RU = ½ x 5 cm x 4 cm = 10 cm2 Contoh Soal 3. Diketahui segitiga ABC dengan garis tinggi AD seperti gambar berikut. Jika ∠BAC = 90°, AB = 4 cm, AC = 3 cm, dan BC = 5 cm, tentukan a. luas segitiga ABC; b. panjang AD. Jawab a. Karena ∠BAC = 90° salah satu kaki sudutnya bisa dijadikan tinggi atau alas, maka = ½ x alas x tinggi = ½ x AB x AC = ½ x 4 cm x 3 cm = 6 cm2 b. panjang AD dapat dicari dengan konsep luas segitiga yaitu = ½ x alas x tinggi = ½ x BC x AD 6 cm2 = ½ x 5 cm x AD AD = 6 cm2/2,5 cm AD = 2,4 cm Contoh Soal 4. Diketahui luas sebuah segitiga adalah 165 cm2 dan panjang alasnya 22 cm. Hitunglah tinggi segitiga. Jawab = ½ x alas x tinggi 165 cm2 = ½ x 22 cm x tinggi 165 cm2 = 11 cm x tinggi tinggi = 165 cm2/11 cm tinggi = 15 cm Soal 5. Perhatikan gambar berikut. Hitunglah a. luas segitiga ABD; b. luas segitiga BCD; c. luas bangun ABCD. Jawab a. Luas segitiga ABD dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x AB x DE = ½ x 14 cm x 9 cm = 63 cm2 b. Luas segitiga BCD dapat dicari dengan persamaan = ½ x alas x tinggi = ½ x CD x DE = ½ x 24 cm x 9 cm = 108 cm2 c. Luas bangun ABCD dapat dicari dengan persamaan = + = 63 cm2 + 108 cm2 = 171 cm2 Contoh Soal 6. Sebidang tanah berbentuk segitiga dengan panjang tiap sisi tanah berturut-turut 4 m, 5 m, dan 7 m. Di sekeliling tanah tersebut akan dipasang pagar dengan biaya Rp per meter. Berapakah biaya yang diperlukan untuk pemasangan pagar tersebut? Jawab Mencari keliling segitiga dapat dilakukan dengan menjumlahkan seluruh sisi dari segitiga tersebut, maka kllΔ = 4 m + 5 m + 7 m kllΔ = 16 m karena biaya yang diperlukan Rp maka Biaya = 16 m x Rp Biaya = Rp Jadi biaya yang diperlukan untuk pemasangan pagar tersebut adalah Rp Contoh Soal 7. Sebuah taman berbentuk segitiga sama kaki dengan panjang sisi yang sama 15 m, panjang sisi lainnya 12 m, dan tinggi 7 m. Jika taman tersebut akan ditanami rumput dengan biaya Rp. hitunglah keseluruhan biaya yang diperlukan. Jawab Luas bangun segitiga dapat dicari dengan persamaan ½ x alas x tinggi = ½ x 12 m x 7 m = 42 m2 karena biaya yang diperukan adalah Rp. maka biaya totalnya adalah Biaya total = x biaya per meter persegi Biaya total = 42 m2 x Rp. Biaya total = Jadi keseluruhan biaya yang diperlukan adalah contoh soal menghitung luas segitiga ini , jangan lupa sebelum meninggalkan blog ini komen terlebih dahulu di kolom komentar Terimakasih .

KarenaEB, BG dan EG adalah diagonal bidang, maka segitiga EBG adalah segitiga sama sisi dengan panjang sisi 8√2 cm dan sudut 60°. Jarak E ke garis BG adalah garis yang ditarik dari titik E yang tegak lurus dengan garis BG yaitu EE'.
PertanyaanDiketahui segitiga ABC dengan garis tinggi AD seperti gambar berikut. Jika ∠BAC = 9 0 ∘ , AB = 4 cm , AC = 3 cm , dan BC = 5 cm , tentukan a. luas segitiga ABC; b. panjang segitiga ABC dengan garis tinggi AD seperti gambar berikut. Jika , , , dan , tentukan a. luas segitiga ABC; b. panjang AD. IKI. KumaralalitaMaster TeacherMahasiswa/Alumni Universitas Gadjah MadaPembahasanDiberikan segitiga dengan , , dan . Luas segitiga tersebut adalah Diketahui pulagaris tinggi membagi sudut A dan tegak lurus dengan garis .Panjang dapat menjadi alas segitiga dengan sisi sebagai tingginya, maka Jadi, luas adalah dan panjang sisi adalah .Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!eervian Pembahasan terpotongSASyarah AraraMakasih ❤️ Perhatikangambar berikut! Diketahui segitiga dengan panjang AB = 3 cm dan BC = 6 cm. Jika garis berat AD, garis bagi BE, dan garis tinggi CF
Connection timed out Error code 522 2023-06-14 180850 UTC What happened? The initial connection between Cloudflare's network and the origin web server timed out. As a result, the web page can not be displayed. What can I do? If you're a visitor of this website Please try again in a few minutes. If you're the owner of this website Contact your hosting provider letting them know your web server is not completing requests. An Error 522 means that the request was able to connect to your web server, but that the request didn't finish. The most likely cause is that something on your server is hogging resources. Additional troubleshooting information here. Cloudflare Ray ID 7d74849a3a5cb963 • Your IP • Performance & security by Cloudflare
Diketahuisegitiga ABC dengan CD adalah garis tinggi pada segitiga tersebut. A. Tentukan pasangan pasangan sudut yang sama besar B. Tentukan perbandingan panjang sisi yang bersesuaian C. Apakah segitiga ADC dan BDC sebangun? Pembahasan : Pada gambar diketahui bahwa : ∠ACD = ∠BCD => o CD = CD => garis tinggi ∠ADC = ∠BDC => siku - siku MatematikaGEOMETRI Kelas 9 SMPKESEBANGUNAN DAN KONGRUENSISegitiga-segitiga kongruenPerhatikan gambar berikut. Diketahui segitiga ABC samakaki, dengan panjang AC=BC. Garis CD adalah garis tinggi pada rusuk AB. Panjang AC=13 cm dan AB=10 Tunjukkan bahwa segitiga ADC kongruen dengan segitiga Tentukan panjang AD, BD, dan Jika m sudut CAD=43, tentukan m sudut ACD, m sudut BCD, dan m sudut kongruenKESEBANGUNAN DAN KONGRUENSIGEOMETRIMatematikaRekomendasi video solusi lainnya0201Segitiga ABC siku-siku di B kongruen dengan segitiga ...Segitiga ABC siku-siku di B kongruen dengan segitiga ...0331Perhatikan gambar trapezium ABCD dan PQRS yang kongruen d...Perhatikan gambar trapezium ABCD dan PQRS yang kongruen d...0316Perhatikan segitiga berikut ini yang kon...Perhatikan segitiga berikut ini yang kon... .
  • lx32rmevt7.pages.dev/216
  • lx32rmevt7.pages.dev/201
  • lx32rmevt7.pages.dev/254
  • lx32rmevt7.pages.dev/394
  • lx32rmevt7.pages.dev/340
  • lx32rmevt7.pages.dev/111
  • lx32rmevt7.pages.dev/96
  • lx32rmevt7.pages.dev/148
  • lx32rmevt7.pages.dev/318
  • diketahui segitiga abc dengan garis tinggi ad seperti gambar berikut